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APPENDIX B
APPROXIMATE METHODS FOR ANALYSIS OF FLOW PROBLEMS

B-1. Introduction. As previously mentioned in Chapter 4, various methods are
available, in addition to flow nets, for solving idealization of seepage prob-
lems. As shown in figure 4-3, these methods include electrical analogy,
hydraulic or sand tank models, viscous flow models, method of fragments, finite
difference method, and finite element method. Prior to conducting an analysis,
the problem to be studied must be defined in terms of:

a. Aquifer and embankment dimensions.

b. Coefficients of permeability of the embankment and foundation soils.

c. Horizontal to vertical permeability ratios.

d. Boundary conditions (impermeable and symmetrical).

e. Exits and entrances (fixed potential areas).

f. Head versus time relationships for unsteady flow.

Sensitivity studies may be run to establish the effect of parameters not known
accurately.

B-2. Electrical Analogy.

a. General. Processes which involve movement of current due to differ-
ences in energy potential operate on the same principles as movement of con-
fined ground water as shown in table B-l. Therefore, to obtain the pattern of
equipotential lines or flow lines (see figure 4-4), the flow domain is trans-
ferred by an electrical conductor of similar geometric form as first proposed
by Pavlovsky in 1918 (Harr 1962). Electrical analogies may involve two-
dimensional conducting paper models or three-dimensional tanks containing
aqueous solution.

b. Two-Dimensional Models. When field conditions can be approximated
by a two-dimensional plan or section, teledeltos conducting paper models may
be used to obtain a flow net. Two-dimensional teledeltos models are simple to
use and can accommodate various geometries. However, it is difficult to simu-
late varying permeabilities and they are generally restricted to steady state
confined aquifers (Bear 1972, Boer and Molen 1972).

c. Three-Dimensional Models. The use of electrical analogy models is
described by various authors (Zangar 1953, Todd and Bear 1959, and Duncan
1963). The three-dimensional electrical analogy model at the U. S. Army
Engineer Waterways Experiment Station (WES) (see figure B-l) is a plexiglass
tank filled with dilute copper sulfate solution and having a calibrated
elevated carrier assembly for the accurate placement of a point electrode probe
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Table B-1. Analogy Between Darcy's Law and Ohm's Law (a)

Darcy's Law Ohm's Law

Q = rate of flow or water I = current (rate of flow of electricity)

K = coefficient of permeability K' = conductivity coefficient

A = cross-sectional area A ' = cross-sectional area

H = head producing flow V = voltage producing current

L = length of path of percolation L' = length of path of current

(a) From Bureau of Reclamation.
127

anywhere in the fluid. Extensive use of the WES model has been made to:

(1) Determine uplift values and seepage quantities for use in the
design of Columbia Lock and Dam, Louisiana (Duncan 1962).

(2) Determine the uplift values and seepage quantities for fully and
partially penetrating well arrays from line and circular sources (Duncan 1963,
Banks 1963, and Banks 1965).

(3) Determine uplift pressures beneath the spillway, piezometric heads
at the downstream toe of the dam, and total seepage quantities for use in the
design of Oakley Dam, Illinois (McAnear and Trahan 1972).

B-3. Sand Tank Model. The sand tank model (hydraulic model), as shown in
figure B-2, consists of a rigid, watertight container with a transparent front,

filled with sand, deaired water,(1) and measuring devices. The geometry of the
sand tank corresponds to that of the prototype. The sand may be placed under
water to provide a homogeneous condition, or layers of different sand sizes may
be used to study anisotropy. If the flow is unconfined and the same material
is used for model and prototype, the capillary rise must be compensated for in
the model. When a steady-state flow is reached, dye can be introduced at
various points along the upstream boundary close to the front wall to form
traces of the streamlines. Piezometers are used to measure the pressure heads
at various locations (Bear 1972 and Harr 1962). A sand tank model was employed
to investigate the effect of length of horizontal drain on the through seepage
flow nets and quantities for a homogeneous and isotropic sand embankment

(1) For prolonged tests, disinfectants such as Formol should be added to the
water to prevent bacterial growth that causes clogging (Bear 1972).
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PARTIALLY PENETRATING WELL
WITH A CIRCULAR SOURCE

SEEPAGE FROM CANALS

TRACER DYE

SEEPAGE IN EMBANKMENTS

Figure B-2. Hydraulic or sand tank model
(prepared by WES)
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(Brand and Armstrong 1968). Sand tank models are also used extensively in
petroleum engineering, ground-water quality, and pollution research (Bear 1972
and Prickett 1979).

B-4. Viscous Flow Models. The viscous flow model, also called the Hele-Shaw
or parallel plate model, is based on the similarity between the differential
equations governing saturated flow in a porous medium and those describing the
flow of a viscous liquid in the narrow space between two parallel plates. The
viscous flow model contains the shape of the structure to be Investigated and
once a steady-state flow is obtained, colored dyes can be injected along the
upstream edge and patterns of streamlines can be observed. A camera (movie or
still) is normally used to record the results of experiments. Inhomogeneous
hydraulic conductivity, such as would exist in a zoned earth dam, can be simu-
lated by varying the width of the interspace between the parallel plates, as
shown in figure B-3. The viscous flow model experiments should be conducted in
a temperature-controlled room because viscosity plays an important role in
analog scaling. If this is not feasible, the temperature should be measured at
all inflow and outflow points during the test and scales must be recomputed
according to the varying average temperature of the liquid in the model (Bear
1972 and Harr 1962). A viscous flow model was constructed at WES to simulate
seepage conditions induced in streambanks by sudden drawdown of the river level.
The results from the model study compared favorably with field observations,
finite difference, and finite element methods (Desai 1970 and Desai 1973).

B-5. Method of Fragments.

a. General. The method of fragments is an approximate analytical
method for the computation of flows and pressure heads for any ground-water
system. The underlying assumption of this procedure developed by Pavlovsky in
1935 (Pavlovsky 1956 and Harr 1962) is that equipotential lines at various
critical locations in the flow region can be approximated by straight vertical
lines. These equipotential lines divide the flow region into parts or frag-
ments. Other assumptions inherent in the method of fragments procedure are
(a) Darcy's law is valid, (b) steady-state flow exists, and (c) the soil medium
is approximated as a single homogeneous and isotropic layer or at series of
such layers. The transformation of anisotropic soil to an equivalent isotropic
soil is described in Section 4.7 of this manual.

b. Basic Concepts. The quantity of flow through a single fragment is
computed as:

(B-1)

where

k - coefficient of permeability

hi = head loss through the fragment

= dimensionless form factor, = Ne/Nf
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a. Homogeneous earth dam

b. Zoned earth dam

Figure B-3. Viscous flow model (courtesy of Bear 140)
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Because the fragment boundaries consist of equipotential lines, the flow
through each fragment must be equal to the total flow through the system. Thus

Since summation of the head loss in each fragment is
loss, the total quantity of flow can be expressed as

where h is the total head loss through the section
head loss in each fragment can be calculated from

. Along the same line, the

(B-2)

equal to the total head

(B-3)

(B-4)

The head loss along any impermeable boundary of a fragment is assumed to
change linearly. Thus the head loss within fragment i up to point A is
equal to the head loss in the fragment times the ratio of the length of the
boundary to point A to the total length of boundary. The basic concept of the
method of fragment procedure is to break the flow region into parts for which
the form factor is shown in figure B-4 (Harr 1977). This manual will describe
how to calculate the factors for each type of fragment (Harr 1962 and Harr
1977).

c. Fragment Types. There are currently nine different fragment types.
Of these, the first six are for confined flow while the last three are for
unconfined flow.

(1) Type I. This fragment type represents a region of parallel
horizontal flow between impervious boundaries. For this internal type
fragment, shown in figure B-5a, the flow per unit width is equal to

(B-5)
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Thus from Equation B-l, the form factor is

An elemental Type I section shown in figure B-5b illustrates that

(B-6)

(B-7)

This elemental section will be used to derive the form factors for fragment
types IV, V, and VI.

(2) Type II. This fragment type represents a vertical impervious
boundary embedded a length S into a pervious layer of thickness T . This
fragment can represent either an entrance condition (figure B-6a) or an exit
condition (figure B-6b). The form factor is obtained from the plot in
figure B-4 where the scale of is given as one-half the reciprocal of

Q/kh or

(B-8)

The form factor could also be expressed as the ratio of the elliptic integral
of the first kind with modulus m over the elliptic integral of the complemen-
tary modulus, m' . For this fragment type, the modulus value is a function of
the ratio S/T . The graph in figure. B-7 was obtained by solving the elliptic
integrals for various combinations of S/T . For the type II fragments, the
ratio of b/T equals 0 .

(3) Type III. This type of fragment represents an impervious layer of
length b , a vertical boundary of depth S , in a pervious layer of thickness
T . Either of the sections shown in figure B-8 can represent this fragment
type. The form factor is obtained directly from figure B-7 with b/T other
than zero. For this case, the elliptic integral modulus is a function of both
b/T and S/T .

(4) Type IV. This type is an internal fragment with boundary length
b , embedment length S , in a pervious layer of thickness T . Figure B-9a
illustrates the two possible configurations. Pavlovsky divided the flow region
into active and passive parts based on the results of electrical analogue tests
as shown in figure B-9b by line AB . An angle of 45 deg was assumed for the
line dividing the two parts of the fragment. This resulted in two cases,
depending on the relation between b and S . For the case where b < S , the
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Figure B-5. Type I fragment (courtesy of McGraw-Hill

Book Company
181

)

Figure B-6. Type II fragment (courtesy of McGraw-Hill

Book Company
181

)
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Figure B-7. Quantity of discharge for symmetrically
placed pilings (courtesy of McGraw-Hill Book

181
Company )
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(a) (b)

Figure B-8. Type III fragment (courtesy of McGraw-Hill

Book Company 181 )

active zone is composed of elements of type I fragments of width dx illus-
trated in figure B-9c. The form factor is the integral of dx over y from
0 to b which results in a form factor of

(B-9)

If b > S, then the fragment can be divided into two fragments as shown in
figure B-9e. The first is a type IV with b > S and the second is a type I
fragment with L equal to b - S . Thus the form factor is the sum of the
form factors which would be

(B-10)

(5) Type V. This fragment type has two vertical boundaries of equal
embedment S in a pervious layer of thickness T . As shown in figure B-10,
the form factor for this fragment is twice that for the type IV fragment.
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Figure B-9. Type IV fragment (courtesy of McGraw-Hill Book
181

Company )
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Figure B-10. Type V fragment (courtesy of McGraw-Hill

Book Company 181)

Since there were two cases of type IV fragment, there are two cases for the
type V fragment. The two cases are for L < 2s and L > 2S . For the first
case, the form factor is

(B-11)

For the second case which consists of a type I fragment within two type IV
fragments, the form factor is

(B-12)

(6) Type VI. This fragment type, illustrated in figure B-11, is the
same as the type V fragment except that the embedment lengths are different.
Using the same approximations as in fragment type IV, there are two cases for
the form factor. For the first case where L > (S' + S"), the form factor is

(B-13)

B-14



EM 1110-2-1901

30 Sep 86

Figure B-11. Type VI fragment (courtesy of McGraw-Hill

Book Company 181
)

For the second case where L < (S' + S"), the form factor is

(B-14)

where

(7) Type VII. This fragment represents the condition of unconfined
flow. This flow is characterized by having one boundary of the flow domain as
a free surface (line AB in figure B-12). This free surface separates the
saturated region from that region where no flow occurs. From Darcy's law and
Dupuit's assumptions, the hydraulic gradient is (h1 - h2)/L and the
cross-sectional area is (h1 + h2)/2 , thus the flow is

(B-15)
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Figure B-12. Type VII fragment (courtesy of McGraw-Hill

Book Company
181

)

From this, the form factor is

(B-16)

(8) Type VIII. This fragment type represents an upstream slope
entrance condition on an earth dam of height hd and is illustrated in
figure B-13. It was assumed that the curve streamlines (cd) could be
approximated by horizontal flow channels of length ed (Pavlovsky 1956 and
Harr 1977). With this assumption, the hydraulic gradient in each channel is

(B-17)
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Figure B-13. Type VIII fragment (courtesy of McGraw-Hill

Book Company 181
)

Integrating the ratio dy/(hd - y) from
for the quantity of flow as

0 to h generates the expression

(B-18)

(9) Type IX. This fragment type, shown in figure B-14, represents the
exit condition where the surface of seepage exists.
(DE) is not an equipotential line or a streamline.

The surface of seepage
Pavlovsky assumed that the

flow is horizontal. For the portion of the slope between D and E , the
flow is the coefficient of permeability times the integral of dy over
cot The flow for
a2dy over the cot

E to F is the permeability times the integral of

expression for the flow is
(a2 + h2 - y) . When the integration is performed, the

(B-19)
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Figure B-14. Type IX fragment (courtesy of McGraw-Hill

Book Company
181

)

d. Exit Gradient. The method of fragments procedure can be used to
determine the exit gradient discussed in paragraph 4.9 of this manual. For
this procedure, the last fragment (downstream) needs to be either a type II or
a type III fragment. The exit gradient is defined as (Harr 1962)

(B-20)

where

h
m

= head loss in the last fragment

K = complete elliptic integral of the first kind with modulus m

T = depth of flow region

As defined before, the modulus m is a function of both b/T and S/T and
is defined as

(B-21)
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Instead of calculating the various values, for type II fragments figure B-15
can be used with S/T to obtain the fraction for IES/hm . By substituting

the appropriate values, the exit gradient is calculated.

e. Example 1. The method of fragment procedure for confined flow will
be illustrated in the following example obtained for John H. Overton Lock and
Dam (U. S. Army Engineer District, St. Louis 1978). This problem will analyze
the steady state flow conditions for a two-dimensional idealization of the
lock structure. The quantity of flow and head along the bottom of the lock
will be determined. For illustrative purposes, the exit gradient procedure
will be included. The dimensions of the structure, shown in figure B-16, are
those used in the analysis after the cross section has been transformed to
account for soil anisotropy.  The original analysis contained two soil layers,
but for illustrative purposes the soil will be modeled as one layer. The first
step is to determine the form factors for each region. The first region is a
type II fragment with S = 19 ft and T = 89 ft . Using figure B-7 with
S/T = 0.21 , the fraction for Q/kh = 0.78 , thus = 0.641 . Region 2 is a

type I fragment with L = 456 ft and a = 70 ft . From figure B-4, the form
factor for the type I fragment is equal to L/a , thus = 6.514 . The third

region is a type II fragment with S = 9 ft and T = 79 ft . Using figure B-7
with S/T = 0.114 , the fraction for Q/kh = 1.01 , thus = 0.495 . The

summation of the form factors is 7.650. The quantity of flow is calculated

from equation B-3. Using transformed permeability of 400 x 10
-4

cm/sec and a

total head of 18 ft, the quantity of flow is calculated to be 266.8 ft3/day/
foot of lock width. The head loss in each fragment is calculated from equa-
tion B-4. The following table lists the head loss for each fragment in this
problem:

Region hi

1 0.641 1.51
2 6.514 15.33
3 0.495 1.16

= 7.650 = 18.00

The head along the bottom decreases from 16.49 ft at the upstream end to 1.16
at the downstream end. Using the assumption of a linear distribution of the
head loss within a fragment, the head at any point along the bottom of the
lock could be calculated as

head at pt a = 16.49 ft - distance to pt A for upstream of lock
total length of lock 15.33 ft   (B-22)
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Figure B-15. Relationship for determining the exit gradient as a function
of the head loss in the fragment and geometry for a Type II fragment

(courtesy of McGraw-Hill Book Company
181

)
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Figure B-16. Transformed section of John H. Overton Lock simplified to one

soil layer (from U. S. Army Engineer District, St. Louis
112

)

The exit gradient is calculated for region 3 which is a type II fragment.
Using S/T = 0.114 with figure B-15, the fraction for IES/hm is found to be

0.63. With a head loss of 1.16 ft in this fragment, the exit gradient is
calculated to be 0.082.

f. Example 2. This example will illustrate the method of fragment pro-
cedure for unconfined flow problems. The example is obtained from John H.
Overton Lock and Dam (U. S. Army Engineer District, St. Louis 1978). The
problem is to locate the free surface in the closure dam and to determine the
quantity of flow through the dam under steady state conditions. The dimen-
sions of the structure shown in figure B-17 are after the material has been
transformed to account for soil anisotropy. This sample problem assumes an
impervious boundary at the base of the dam. To account for some flow under
the dam, the impervious boundary could be lowered. By lowering the boundary
to the lowest possible point, bounds for the problem would be established.
There are three fragment types in this earthen embankment. Region 1 is a
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Figure B-17. Transformed section of John H. Overton closure dam (from

U. S. Army Engineer District, St. Louis
112

)

type VIII fragment while region 2 is a type VII fragment and region 3 is a
type IX fragment. To calculate the flow through region 1, equation B-18 is
used with h

i
= 32 ft; hd = 37 ft, and = 19.9 deg (cot = 2.76).

Substituting into the equation produces

For region 2, the quantity of flow is calculated from equation B-15.
Substituting into this equation produces

(B-23)

(B-24)

For region 3, equation B-19 defines the quantity of flow. By substituting
cot = 2 and H2 = 14 ft produces

(B-25)
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From the embankment geometry, L can be defined as

(B-26)

By substituting into equation B-26, there are four equations with four
unknowns, h , a2 , Q/k , and L . There are several methods to solve these

four equations (Harr 1977). For the case where h2 = 0 , a reduction of

two equations and two unknowns occurs. For this example, equation B-23 will
be combined with equation B-24 and equation B-26 will be substituted for L .
This produces

Also equation B-23 can be combined with equation B-25, producing

(B-27)

(B-28)

Equations B-27 and B-28 have reduced the equations and unknowns by two. Thus
with two equations and two unknowns, a trial and error graphical process can
be used. The results of this process are shown in figure B-18 and indicate
that h = 28.9 ft and a2 = 0.9 ft., Substituting into equations B-23 and B-25

generates a Q/k value of 1.71 which results in an estimated flow of
242.4 ft3/day/ft of dam. Knowing h and a2 , the location of the phreatic
surface can be estimated.

g. Flow in Layered Systems. One of the limitations of the method of
fragments is that the flow layer is assumed to be homogeneous and isotropic.
An approximate procedure to determine flow characteristics of a layered system
was proposed by Polubarinova-Kochina (1941). Harr (1977) extended this method
as follows. The coefficients of permeability for the two layers are related by
a dimensionless parameter by the expression

where

(B-29)

k1 = coefficient of permeability of the upper layer

k2 = coefficient of permeability of the lower layer
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h a 2

28.8 -0.4
29.0 2.1
30.0 8.6
31.0 13.6

h a
2

29.9 0.6
27.8 1.2
25.6 1.7

Equation B-27

Equation B-28

Figure B-18. Graphical solution-of equations B-27 and B-28

(from U. S. Army Engineer District, St. Louis
112

)

B-24



EM 1110-2-1901

30 Sep 86

The ratio of permeabilities can vary from 0 to infinity. Over this range,
ranges from 0 to 1/2. The basis of this method is to determine the flow and
head losses for three certain special cases of and then interpolate
between these values. The three special cases are as follows:

(1) = 0 . For to be equal to 0, k2 must equal 0. Therefore

the problem is reduced to a one-layer problem with a flow region thickness
equal to the upper layer.

(2) = 1/4 . For to be equal to 1/4, k2 must equal k1 .

Therefore, the problem is reduced to a one-layer problem with a flow region
the thickness of the upper and lower layers.

(3) = 1/2 . For to be equal to 1/2, k2 must be infinite. This

case represents the infinite flow where there is no resistance to flow in the
lower layer. Since Q/k1h = the inverse of this ratio is equal to zero.

This procedure can be expanded to a three-layer system by the use of two
values. The first value would be for the top two layers, while the second
would be for the bottom two layers.

h. Example 3. This example will illustrate the method of fragment pro-
cedure for confined flow in a two-layer system. The example is obtained from
John H. Overton Lock and Dam (U. S. Army Engineer District, St. Louis 1978).
This problem will analyze the steady-state flow conditions for the dam and
stilling basin. The quantity of flow and head along the bottom of the struc-
ture will be determined. For illustrative purposes, the exit gradient proce-
dure will be included. The effect of various parameters like the length of
sheetpile cutoff can be studied using this procedure. The dimensions of the
structure, shown in figure B-19, are those used in the analysis after the cross
section has been transformed to account for soil anisotropy. There are three
fragments for this problem and three cases to be evaluated. For the first
case, 0 , all the flow is assumed to occur in the clay layer. Region 1 is
a type II fragment with S = 25 ft and T = 35 ft. Using figure B-7 with
S/T = 0.71 , the fraction for Q/kh = 0.36 , thus = 1.38 . The second

region is a type V fragment with S = 13 ft, T = 23 ft, and L = 73.5 ft.
Since L > 25 , equation B-13 is used to calculate the form factor. For the
above values, the form factor is 3.73. Region 3 is a type II fragment where
S = 24 ft and T = 34 ft. The form factor, using figure B-7, is calculated to
be 1.36. Using equation B-1, the ratio Q/k1 is 2.78 and k1/Q is 0.36 .

For the second case, = 1/4 , the flow is assumed to be equal in both layers.
The form factors are recalculated using the same fragment types. The value of
Q/k1 is 6.50 which results in a k1/Q value of 0.15. For the last case,

= 1/2 , all flow is assumed to be in the lower sand layer. Only vertical
flow occurs in the top or clay layer. For this case, Q/k1 is infinite which

results in a k1/Q of 0 . A plot of k1/Q versus is shown in fig-

ure B-20a. For this problem k2 is 200 times k1 , therefore equals 0.48.
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Figure B-19. Transformed section of John B. Overton Dam and stilling
basin for one case of sheet pile lengths (from U. S. Army Engineer

District, St. Louis
112

)

By interpolation for = 0.48 , k1/Q equals 0.01 which results in a flow Q

of 56.7 ft3/day/ft of dam. To determine the head along the bottom of the
structure, the head at points A and B in figure B-19 must be determined. Using
the procedure described in example 1, equation B-22, the following head loss
and total head values are calculated.

Point A Point B
Head Loss Total Head Head Loss Total Head

ft ft ft ft

0 5.2 52.8 12.8 45.2

1/4 6.2 51.9 12.0 46.0

For the case where = 1/2 , the head anywhere along the bottom of the struc-
ture is equal to half the total head loss, or for this case 9 ft. Thus the
total head on points A and B is equal to 49 ft. Figure B-20b is the plot of
the total head versus and shows, for an of 0.48, the total head at
point A is 49.4 ft while the total head at point B is 48.5 ft. The exit gra-
dient for each case is calculated by the procedure described in example 1.
For the case of 0 , the fraction IES/hm is 0.55 which with S = 24 ft
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Figure B-20. value plots for John H. Overton Dam and stilling

basin (from U. S. Army Engineer District, St. Louis 112
)
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and hm

IES/hm

= 3.8 ft produces IE =

is 0.615 which with S =

IE = 0.128 . For the case where

the distance is the thickness of

0.087 . For the = 1/4 case, the fraction

24 ft and hm = 5.0 ft produces

= 1/2 , the head loss is the total head and

the top layer. Using the equation

the exit gradient is 0.265. The exit gradient versus plot is shown in
figure B-20c. For an value of 0.48, the exit gradient is 0.245.

(B-30)

i. Uses and Limitations. The method of fragment procedure should be
used as a design tool where various factors are changed to evaluate their
effect or as an analytical tool when quick approximate results are needed.
When numerous factors are varied, the construction of flow nets becomes very
tedious and time consuming. The method of fragment procedure will generate
reasonable results for problems where the assumptions are not greatly violated.
There are several points the user needs to be aware of when using this proce-
dure. The flow region must be generalized so that it consists of horizontal
and vertical boundaries. The procedure models the actual flow paths within
the flow region, thus if there is any doubt as to the direction, a rough flow
net should be drawn. This becomes important when a small portion of a struc-
ture is modeled with several fragments because the flow could be modeled in
unnatural paths. The accuracy of the results is dependent upon how well the
fragment boundary actually represents vertical equipotential lines. The
greater the deviation, the greater the degree of error. However, for many
practical problems reasonable results are generated. Comparison of the method
of fragment results with finite element solutions for a one-layer system
showed that the quantity of flow values for the fragment procedure are within
8 percent of the finite element results, while the uplift values are within
38 percent of the finite element results. The Computer-Aided Structural Engi-
neering (CASE) project has developed a computer program for the method of
fragments procedure with a user manual describing the program (Pace et al.
1984).

B-6. Finite Difference Method.

a. Method of Solution. As previously mentioned in Chapter 4, the
finite difference method solves the Laplace equations by approximating them
with a set of linear algebraic expressions. The approximation is mathematical
rather than physical. The early methods of solving finite difference expres-
sions for Laplace's equation were based upon hand calculations by the relaxa-

tion method(1). However, more recently a wide range of finite difference
solutions suited to the digital computer have been developed. A description of

(1) For example, see Appendix A of EM 1110-2-2501.
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available methods used to solve finite difference problems including example
applications, case studies, and computer program listings is available (Rushton
and Redshaw 1979).

b. Advantages. Use of iterative techniques such as successive over-
relaxation which converge to the correct solution allows solution of uncon-
fined and transient flow problems, For simple problems, the finite difference
method is usually more economical than the finite element method (Rushton and
Redshaw 1979).

c. Disadvantages. The finite difference method is not suited to com-
plex geometry, including sloping layers and pockets of materials of varying
permeability. Irregular grids are difficult to input. Therefore, zones where
seepage gradients or velocities are high cannot be accurately modeled (Rushton
and Redshaw 1979).

d. Applications. The finite difference method was used at WES to simu-
late seepage conditions in streambanks induced by sudden drawdown of the river
level. As mentioned previously, this study included a viscous flow model,
field observations, and application of the finite element and finite differ-
ence methods. The results of the study indicated that the finite difference
method provided satisfactory and economical solutions for transient unconfined
fluid flow in porous, anisotropic, and nonhomogeneous media (Desai 1970 and
Desai 1973). The finite difference method was used to predict the location of
the phreatic surface within a zoned embankment with arbitrary fluctuations of
the reservoir (Dvinoff 1970). Generalized digital computer programs have been
developed which use the finite difference method to simulate one-, two-, and
three-dimensional nonsteady flow problems in heterogeneous aquifers under
water table and artesian conditions (Prickett and Lonnquist 1971 and Desai
1977). The finite difference method has been used to predict unsteady flow in
gravity wells. Good agreement was found between computed results and
laboratory test results obtained using a sand tank model (Desai 1977).

B-7. Finite Element Method.

a. Method of Solution. As previously mentioned in Chapter 4, the
finite element method is conceptually a physical rather than a mathematical
approximation. The flow region is subdivided into a number of elements and
permeabilities are specified for each element. Boundary conditions are speci-
fied in terms of heads and flow rates and a system of equations is solved to
compute gradients and velocities in each element (Desai and Abel 1972 and Desai
1977). Two- and three-dimensional finite element seepage computer programs for
both confined and unconfined flow problems have been developed at WES. Steady-
state and transient problems (that can be treated as a series of steady-state
problems) can be solved (Tracy 1973a; Tracy 1973b; and Hall, Tracy, and
Radhakrishnan 1975). An interactive graphics preprocessor is available to
generate the finite element grid (Tracy 1977a). It is possible to compute the
stream function and potential and plot contours of these values to obtain the
flow net (Christian 1980 and Christian 1980). Details concerning the selection
of spatial and time meshes, computer time required, convergence, and stability
are available (Desai 1977). Also, an interactive graphics postprocessor is
available to assist in the analyses of the finite element results (Tracy

B-29



EM 1110-2-1901
31 Jul 86

1977b). A listing of finite element seepage computer programs used within the
Corps is available (Edris and Vanadit-Ellis 1982).

b. Advantages. The finite element method is well suited to complex
geometry, including sloping layers and pockets of materials of varying perme-
ability. By varying the size of the elements, zones where seepage gradient or
velocity is high can be accurately modeled.

c. Disadvantages. The finite element method is usually more costly than
the finite difference method for simple problems (Rushton and Redshaw 1979).

d. Applications. The finite element method has been used in several
cases to provide solutions to seepage problems.

(1) WES studies. As discussed previously, the finite element method was
used at WES to simulate seepage conditions in streambanks induced by sudden
drawdown of the river level. This study included a viscous flow model, field
observations, and application of the finite difference and finite element
methods. The results of the study indicated that the finite element method
provided satisfactory solutions for transient unconfined fluid flow in porous,
anisotropic, and nonhomogeneous media (Desai 1970 and Desai 1973).

(2) Location of phreatic surface. The finite element method has been
used to determine the location of the phreatic surface in earth dams (Isaacs
1979; Isaacs 1980; Wei and Shieh 1979; and Desai and Kuppusamy 1980). The
finite element method was used to locate the phreatic surface within tailings
pond embankments and to define the subsurface flow of water from the pond.
Results predicted using the finite element model were confirmed with
measurements in a laboratory model and in the field (Kealy and Busch 1971).

(3) W.A.C. Bennett Dam. The finite element method was used to assess
the potential seepage flows and uplift pressures in the foundation rock for
W.A.C. Bennett Dam in British Columbia, Canada (see figure B-21). The finite
element analysis (see figure B-22) was carried out assuming the following
conditions:

(a) With an effective grout curtain.

(b) Without an effective grout curtain.

(c) With a drainage system.

(d) Without a drainage system.

(e) With various rock permeabilities.

The results of the finite element analysis, shown in figure B-23, indicate the
greatest reduction in seepage flow and hydrostatic pressure could be accom-
plished by an effective grout curtain and downstream-drainage system (Taylor
and Chow 1976).
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Figure B-21. Cross section of W.A.C. Bennett Dam, British Columbia,

Canada (courtesy of International Commission on Large Dams
269

)

(4) Corps of Engineers levees. The finite element method was used by
the U. S. Army Engineer District, Rock Island, to study hydraulic sand fill
levees along the Mississippi River (Schwartz 1976). Finite element and

gradient plane (1) analyses were used in conjunction with data from a full scale
test levee to establish the material properties of the sand levees and to
determine the exit point of the free seepage surface, the quantity of through
seepage, and the exit gradients along the free discharge face. A parameter
study was performed and dimensionless design charts were developed.

(5) Reservoir loading conditions on zoned embankments. The use of the
finite element method to study the effect of initial filling of the reservoir,
steady seepage, and rapid drawdown of the reservoir on zoned embankments has
been given (Eisenstein 1979).

(6) Bureau of Reclamation dams. The Bureau of Reclamation has utilized
two- and three-dimensional finite element methods, electrical. analogy, and
mathematical methods to analyze seepage flow through a dam embankment and

(1) The gradient plane method is a graphical solution by means of the hodo-
graph (see description by Casagrande 1937).
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Figure B-22. Finite element study results (courtesy of International

Commission on Large Dams
269)

Figure B-23.

International

Uplift pressure under various

Commission on Large Dams269)

conditions (courtesy of
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foundation (Mantei and Harris 1979). Narrows Dam, Colorado, on the South
Platte River, was analyzed for seepage at the feasibility stage. Because of a
pervious foundation, the planners called for a positive vertical cutoff by
constructing a slurry wall down to the underlying shale. However, near the
right abutment the shale drops away to depths too great for economical slurry
wall construction. A three-dimensional finite element model (see figure B-24)
was used to determine the vertical exit gradients at the downstream toe of the
dam. The finite element method was used to study the effect of a toe drain,
partial depth slurry trench, partially and fully penetrating relief wells (see
figure B-25). Calamus Dam, Nebraska, on the Calamus River, was also analyzed
by the Bureau of Reclamation for seepage at the feasibility stage (Mantei and
Harris 1979; Mantei, Esmiol, and Cobb 1980; Mantei and Cobb 1981; and Cobb
1984). Calamus Dam has a setting very similar to Narrows Dam in the sense that
it is an earth dam on a pervious foundation. However, the underlying  shale at
Calamus Dam is at such a great depth that it cannot be used as the base for a
cutoff wall as it was for Narrows Dam. Early thinking on the project involved
the use of a slurry trench cutoff down to a pervious sandstone fromation. A
three-dimensional finite element model (see figure B-26) was used to determine
the effects of an embankment toe drain, slurry trench under upstream blanket,
and/or relief wells at the downstream toe of the dam on the seepage rates and
hydraulic gradients in the dam foundation. Time and expense in operating the
large three-dimensional finite element models made it necessary that
be given to studying the various design alternatives using the best estimate

priority

of permeability for each foundation material rather than conducting sensitiv-
ity studies to establish the effect of varying the permeability (see para-
graph B-l). The three-dimensional finite element models were five elements
deep, with the bottom layer of elements representing the sandstone, the next
layer sand and gravel, recent alluvium, interbedded fine sand, and dune sand.
A detailed three-dimensional finite element model was made for the outlet
works area that defined more of the design details, such as the filter blanket
under the stilling basin and channel and water table elevation controls, to
study the effectiveness of relief wells around the stilling basin.

(7) Corps of Engineer dams. The finite element method was used by the

U. S. Army Engineer District, Huntington,(1) in a reanalysis of the underseep-
age at Bolivar Dam, Ohio, completed in 1938 on Sandy Creek (U. S.  Army Engineer
District, Huntington 1977a). A two-dimensional finite element model (see fig-
ure B-27) was used to determine the effects of an embankment toe drain, up-
stream impervious blanket, and proposed relief wells on seepage quantities,
exit gradients, and uplift pressures. A sensitivity study was conducted using
the two-dimensional finite element model to determine the influence of various
pool and rock surface levels, the permeability ratio of foundation soils, the
existence of a downstream gravel layer, and the effective source of seepage
entry upon underseepage. Typical test results for one set of boundary condi-
tions and permeability values are given in figure B-28. Additional applica-
tions of the two-dimensional finite element method to conduct sensitivity
analysis to assess the effect of permeability anisotropy and various seepage
control measures was given by Lefebvre and coworkers (Lefebvre, Part, and

(1) Work was performed by Soil Testing Services, Inc., Northbrook, Illinois.
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Figure B-24. Contours of exit gradient from three-dimensional finite
element model study of Narrows Dam, Colorado (courtesy of American

Society of Civil Engineers
217

)
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Figure B-25. Vertical exit gradients from three-dimensional finite
element model study of Narrows Dam, Colorado (courtesy of American

Society of Civil Engineers
217

)
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Figure B-26. Grid for three-dimensional finite element model
study of Calamus Dam, Nebraska (courtesy of American Society

of Civil Engineers
217

)
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Tournier 1981). The finite element method was used by the U. S. Army Engineer

District, Huntington,(1) in a reanalysis of the underseepage at Mohawk Dam,
Ohio, completed in 1937 on the Walhonding River (U. S. Army Engineer District,
Huntington 1979b). A three-dimensional finite element model (see figure B-29)
was used to study the cause of unusually high relief well flows. Typical test
results for one set of boundary conditions are given in figure B-30.

(1) Work was performed by Soil Testing Services, Inc., Northbrook, Illinois.
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